News
3D printing bone tissue
Jun 28 2022
ACES and University of Wollongong (UOW) researchers have teamed up with seaweed bioinks collaborators Venus Shell Systems for a new paper on wound healing, published in Biomaterials Science.
Titled ‘3D bioprinting dermal-like structures using species-specific ulvan’, the new findings outline how green seaweed contains a molecular species known as ulvan, playing a key role in wound healing with its structure resembling the biomolecules found in humans.
The team behind the paper from ACES and UOW includes Director Prof Gordon Wallace and researchers A/Prof Stephen Berine, Dr Zhilian Yue and Xifang Chen, in collaboration with Venus Shell System’s Dr Pia Winberg and stem cell biologist Prof Yan-Ru Lou from Fundan University.
“Wound healing occurs in a 3D environment involving a number of cell types and biomolecules, so the use of 3D bioprinting to create scaffolds for wound healing has attracted much attention,” said Prof Wallace.
“Here we have formulated a bioink for 3D bioprinting, containing ulvan and discovered that the presence of it assists in the proliferation of cells involved in wound healing.”
The team’s findings also showed that ulvan regulates the function of cells in producing key biomolecules used during wound healing, a positive step forward for the research.
“Ulvan acts as molecular reinforcement in 3D printed scaffolds, a key feature in preventing structure contraction, and hence minimizes scarring during wound healing,” said Prof Wallace.
ACES researchers have been collaborating with Dr Winberg and Venus Shell Systems for a number of years now, going from strength to strength to continue to meet clinical challenges.
“It has been so exciting to begin the journey of unlocking molecules from seaweed and delivering them to new heights in partnership with researchers in biomaterials,” said Dr Winberg.
“Particularly when the molecules that we have found from a unique species of Australian green seaweed are uncannily similar in structure and function to the molecules that exists in human skin.
“It will be exciting when this translates into improving the health outcomes for patients with wounds.”
Access the full paper here.